961 research outputs found

    Analysis of a diffusive effective mass model for nanowires

    Get PDF
    We propose in this paper to derive and analyze a self-consistent model describing the diffusive transport in a nanowire. From a physical point of view, it describes the electron transport in an ultra-scaled confined structure, taking in account the interactions of charged particles with phonons. The transport direction is assumed to be large compared to the wire section and is described by a drift-diffusion equation including effective quantities computed from a Bloch problem in the crystal lattice. The electrostatic potential solves a Poisson equation where the particle density couples on each energy band a two dimensional confinement density with the monodimensional transport density given by the Boltzmann statistics. On the one hand, we study the derivation of this Nanowire Drift-Diffusion Poisson model from a kinetic level description. On the other hand, we present an existence result for this model in a bounded domain

    An effective mass theorem for the bidimensional electron gas in a strong magnetic field

    Full text link
    We study the limiting behavior of a singularly perturbed Schr\"odinger-Poisson system describing a 3-dimensional electron gas strongly confined in the vicinity of a plane (x,y)(x,y) and subject to a strong uniform magnetic field in the plane of the gas. The coupled effects of the confinement and of the magnetic field induce fast oscillations in time that need to be averaged out. We obtain at the limit a system of 2-dimensional Schr\"odinger equations in the plane (x,y)(x,y), coupled through an effective selfconsistent electrical potential. In the direction perpendicular to the magnetic field, the electron mass is modified by the field, as the result of an averaging of the cyclotron motion. The main tools of the analysis are the adaptation of the second order long-time averaging theory of ODEs to our PDEs context, and the use of a Sobolev scale adapted to the confinement operator

    Giant spin-dependent photo-conductivity in GaAsN dilute nitride semiconductor

    Full text link
    A theoretical and experimental study of the spin-dependent photoconductivity in dilute Nitride GaAsN is presented. The non linear transport model we develop here is based on the rate equations for electrons, holes, deep paramagnetic and non paramagnetic centers both under CW and pulsed optical excitation. Emphasis is given to the effect of the competition between paramagnetic centers and non paramagnetic centers which allows us to reproduce the measured characteristics of the spin-dependent recombination power dependence. Particular attention is paid to the role of an external magnetic field in Voigt geometry. The photoconductivity exhibits a Hanle-type curve whereas the spin polarization of electrons shows two superimposed Lorentzian curves with different widths, respectively related to the recombination of free and trapped electrons. The model is capable of reproducing qualitatively and quantitatively the most important features of photoluminescence and photocurrent experiments and is helpful in providing insight on the various mechanisms involved in the electron spin polarization and filtering in GaAsN semiconductors.Comment: 10 pages, 5 figure

    Conception et Mise en Oeuvre d’un Emulateur de ChaĂźnes de Conversion avec Lissage : Applications aux HoulogĂ©nĂ©rateurs Directs

    Get PDF
    National audienceL'intégration au réseau de la production des sources d'énergies marines renouvelables est une problématique majeure : lissage de la production, respect de la contrainte de qualité d'énergie, autant de travaux à mener afin d'accroßtre le taux de pénétration de ces sources dans les réseaux électriques futurs. Ainsi le développement des bancs de test s'avÚre indispensable pour étudier et contribuer à la validation de tels travaux. Cet article présente la modélisation et la conception d'un dispositif permettant de valider des modÚles énergétiques de la chaine électrique d'un houlogénérateur et tester matériellement les lois de gestion du lissage. Le systÚme est composé de deux ponts triphasés dos-à-dos : un pont émulant l'ensemble convertisseur-génératrice avec sa loi de récupération d'énergie et un autre pont injectant l'énergie au réseau, et d'un systÚme de lissage composé essentiellement d'un hacheur réversible et d'un banc de supercondensateurs, piloté selon une loi de gestion donnée

    Room temperature Giant Spin-dependent Photoconductivity in dilute nitride semiconductors

    Full text link
    By combining optical spin injection techniques with transport spectroscopy tools, we demonstrate a spin-photodetector allowing for the electrical measurement and active filtering of conduction band electron spin at room temperature in a non-magnetic GaAsN semiconductor structure. By switching the polarization of the incident light from linear to circular, we observe a Giant Spin-dependent Photoconductivity (GSP) reaching up to 40 % without the need of an external magnetic field. We show that the GSP is due to a very efficient spin filtering effect of conduction band electrons on Nitrogen-induced Ga self-interstitial deep paramagnetic centers.Comment: 4 pages, 3 figure

    Second order averaging for the nonlinear Schroedinger equation with strongly anisotropic potential

    Get PDF
    International audienceWe consider the three dimensional Gross-Pitaevskii equation (GPE) describing a Bose-Einstein Condensate (BEC) which is highly confi ned in vertical z direction. The highly confi ned potential induces high oscillations in time. If the confi nement in the z direction is a harmonic trap (which is widely used in physical experiments), the very special structure of the spectrum of the confi nement operator will imply that the oscillations are periodic in time. Based on this observation, it can be proved that the GPE can be averaged out with an error of order of epsilon, which is the typical period of the oscillations. In this article, we construct a more accurate averaged model, which approximates the GPE up to errors of order epsilon squared. Then, expansions of this model over the eigenfunctions (modes) of the vertical Hamiltonian Hz are given in convenience of numerical application. Effi cient numerical methods are constructed for solving the GPE with cylindrical symmetry in 3D and the approximation model with radial symmetry in 2D, and numerical results are presented for various kinds of initial data

    Comparative Study of Human and Automated Screening for Antinuclear Antibodies by Immunofluorescence on HEp-2 Cells

    Get PDF
    Background: Several automated systems had been developed in order to reduce inter-observer variability in indirect immunofluorescence (IIF) interpretation. We aimed to evaluate the performance of a processing system in antinuclear antibodies (ANA) screening on HEp-2 cells. Patients and Methods: This study included 64 ANA-positive sera and 107 ANA-negative sera that underwent IIF on two commercial kits of HEp-2 cells (BioSystems¼ and Euroimmun¼). IIF results were compared with a novel automated interpretation system, the “CyclopusCADImmuno¼” (CAD). Results: All ANA-positive sera images were recognized as positive by CAD (sensitivity = 100%), while 17 (15.9%) of the ANA-negative sera images were interpreted as positive (specificity = 84.1%), =0.799 (SD=0.045). Comparison of IIF pattern determination between human and CAD system revealed on HEp-2 (BioSystems¼), a complete concordance in 6 (9.37%) sera, a partial concordance (sharing of at least 1 pattern) in 42 (65.6%) cases and in 16 (25%) sera the pattern interpretation was discordant. Similarly, on HEp-2 (Euroimmun¼) the concordance in pattern interpretation was total in 5 (7.8%) sera, partial in 39 (60.9%) and absent in 20 (31.25%). For both tested HEp-2 cells kits agreement was enhanced for the most common patterns, homogenous, fine speckled and coarse speckled. While there was an issue in identification of nucleolar, dots and nuclear membranous patterns by CAD. Conclusion: Assessment of ANA by IIF on HEp-2 cells using the automated interpretation system, the “CyclopusCADImmuno¼” is a reliable method for positive/negative differentiation. Continuous integration of IIF images would improve the pattern identification by the CAD

    Graphene-based photovoltaic cells for near-field thermal energy conversion

    Get PDF
    Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. In far field, the efficiency of these systems is limited by the thermodynamic Schockley-Queisser limit corresponding to the case where the source is a black body. On the other hand, in near field, the heat flux which can be transferred to a photovoltaic cell can be several orders of magnitude larger because of the contribution of evanescent photons. This is particularly true when the source supports surface polaritons. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. Here we show that graphene-based hybrid photovoltaic cells can significantly enhance the generated power paving the way to a promising technology for an intensive production of electricity from waste heat.Comment: 5 pages, 4 figure

    Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes

    Full text link
    We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re
    • 

    corecore